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bstract

The multilamination process that characterizes interdigital micromixers is an efficient and technologically feasible method for maximizing and
ontrolling mass and/or heat transfer between two or more segregated fluid streams. We analyze the dynamics of mixing that takes place in the
ixing channel downstream the interdigital apparatus. Specifically, we investigate, for different flow profiles, how the channel length necessary

o achieve a prescribed level of mixedness depends on the degree of lamination (number and thickness of lamellae) of the feed stream. As a
ase study, we consider plug, shear and Poiseuille flow, and compare steady-state profiles resulting from the numerical simulation of the full
dvection–diffusion problem with the analytical solution stemming from the one-dimensional Sturm–Liouville eigenvalue problem along the

panwise coordinate, obtained neglecting streamwise diffusion. We find that (i) the mixing length can be significantly affected by the flow profile,
specially at high degree of lamination of the feed stream, and (ii) in general, no obvious scaling between mixing length and lamellar thickness
an be assumed. A rigorous way to approach the design of these micromixers is proposed.

2007 Elsevier B.V. All rights reserved.
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. Background and motivation

Interdigital micromixers provide a novel technology that
llows to accomplish a nearly complete homogenization of
wo or more segregated fluid streams within extremely short
ontact times (e.g. up to order of milliseconds in the case of
iquids, see [1] and therein cited references). Other uses of these
evices include microreactions as microextraction [2], as well as
iquid–liquid dispersion [3]. The simplest case of “T-junction”
hannel is also used for sensing and separating analytes [4,5],
easuring diffusivities and determining kinetic rate constants

6].
The core of the equipment is constituted by a comb-like

rrangement of microchannels that split the streams entering
he system and rearrange them into a multilaminated structure
here alternating lamellae of the two fluids are forced to flow
longside. The typical width of one of such lamellae is of the
rder of tens of micron. The spatially periodic structure of the
rocess stream is then squeezed into a smaller channel, referred

∗ Corresponding author. Tel.: +39 06 44585892; fax: +39 06 44585451.
E-mail address: max@giona.ing.uniroma1.it (M. Giona).
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o as mixing channel, where the desired degree of mixing is
eached.

Typically, the micromixers are identified by the type of geom-
try connecting the multilamination apparatus and the mixing
hannel. Frequently used configurations are the rectangular, slit-
haped, triangular, and the super-focus mixer [7,8]. Fig. 1 shows
schematic representation of the rectangular micromixer.

Apart from specific cases, such as that of relatively high
eynolds number flow (e.g. order Re = 103) in the slit-shaped
icromixer, little mixing occurs in the portion of the apparatus

onnecting the multilamination device and the mixing channel.
s a result, the flow stream at the entrance of the mixing chan-
el can be thought of as an ordered array of alternating lamellae
8], each characterized by a constant concentration of one of the
pecies that are to be mixed.

Beside lowering substantially the mixing time associated
ith advecting–diffusing species, the number and width of the

amellae can also have a strong influence on the performance
f the device in the case where the two species are chemically

eactive. As an example, numerical simulations suggest that the
egree of lamination of reactants fed to a microreaction channel
an impact substantially on the yield and product distribution of
arallel-competitive and parallel-consecutive reactions [9].

mailto:max@giona.ing.uniroma1.it
dx.doi.org/10.1016/j.cej.2007.07.067
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Nomenclature

Ai(z) Airy function of first kind
Bi(z) Airy function of second kind
Ch generalized Fourier coefficients defined by Eq.

(15)
D diffusivity
L channel length
ns number of lamellae of the inlet concentration pro-

file
Pe Peclet number, Pe = δ2U/DL

s lamellar width
U characteristic mean velocity
vx(y) dimensionless axial velocity
x dimensionless axial coordinate
y dimensionless vertical coordinate
Yh eigenfunctions of the Sturm–Liouville problem

Greek letters
α reciprocal of the aspect ratio, α = δ/L

δ channel width
λh eigenvalue of the Sturm–Liouville operator
μ degree of mixedness
ξ Pe-scaled axial coordinate ξ = x/Pe

σ(x) variance of the concentration profile at x
σν variance ratio defined by Eq. (6)
φ dimensionless solute concentration
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φi(y) inlet concentration profile
φ(ns)

i inlet lamellar profile defined by Eq. (4)

When designing micromixers, an important piece of informa-
ion is an a priori estimate of the mixing performance associated
ith a given lamellar thickness, say s, of the feed stream. Specif-

cally, one would like to estimate the length, L, of the channel
hat ensures a prescribed level of mixedness at the system outlet
ection.
An analytical estimate of the mixing length is usually
btained by invoking simplifying assumptions in the solution
f the steady-state advection–diffusion problem, namely: (i) flat
elocity profile (plug flow), (ii) high value of the channel aspect

Fig. 1. Schematic diagram of the rectangular interdigital micromixer.

t
a
t
S
d
d
l
t
fl
p

c
d
m
t
m
b
r

ering Journal 138 (2008) 523–537

atio (semi-infinite channel), and (iii) substitution of the zero dif-
usive flux condition at the channel walls with periodic boundary
onditions in the spanwise direction1.

Under these assumptions, the advection–diffusion boundary
alue problem is recast into a simpler partial differential problem
hat is formally identical to a standard one-dimensional unsteady
iffusion problem, where the relationship between time, say T,
nd length of the channel is given by the ratio between L and
he convective mean velocity, say U, i.e. T = L/U. By using
hese approximations, a scaling relationship T ∼ s2 or, equiva-
ently, L ∼ s2, is obtained (see, e.g. [2,11]). Furthermore, this
caling relationship results independent of the level of mixed-
ess required (a derivation of this result is discussed in detail in
ppendix A).
In this article, we challenge this estimate and analyze sep-

rately the role of each simplifying assumption. The analysis
s carried out by using three prototypical flow profiles, namely
lug, shear, and Poiseuille flow, which are frequently encoun-
ered in microhydrodynamic applications. Specifically, plug-like
elocity profiles are encountered in electroosmotically driven
ows [12], while the shear profile, typical of micromotors
nd microbearings [13], can in principle be obtained by elec-
roosmosis through an asymmetric surface treatment of the
hannel walls. The Poiseuille profile characterizes pressure-
riven microflows.

We compare and contrast results from direct numerical
imulations of the full advection–diffusion equation with the
olution of the simplified transport equation stemming from
he high-aspect ratio approximation, which is equivalent to a
ne-dimensional unsteady diffusion problem with variable dif-
usivity along the spanwise coordinate. The analysis of this
roblem reduces to finding the eigenvalue–eigenfunction spec-
rum of a Sturm–Liouville second-order problem specified by
he flow profile.

The article is organized as follows. Section 2 introduces
he physical problem, and its mathematical and computa-
ional formulation. Section 3 addresses the Sturm–Liouville
pproach for high-aspect ratio microchannels, and the spec-
ral (eigenvalue/eigenfunction) structure of the resulting
dvection–diffusion operator. Specifically, Section 3.3 derives
he main results for typical laminar flows in microchannels, and
ection 3.4 introduces a quantitative way for the design of inter-
igital micromixers based on the Sturm–Liouville formulation
iscussed in Section 3.3. It is shown that the classical scaling
aw L ∼ s2 (relating the channel length to the lamellar width of

he feed stream) it is far from being verified for generic laminar
ows. The approach proposed in Section 3.4 provides a sim-
le design strategy for interdigital micromixers. In Appendix

1 The simplifying assumptions of flat velocity profile and semi-infinite
hannel (which allow to neglect axial diffusion) are also used to construct one-
imensional models of mixing for predicting the mixing length associated with
ore complex geometries, such as, e.g. the split-and-recombine mixer [10]. In

his context, the effort directed towards the construction of simplified analytical
odels of the (possibly chaotic) three-dimensional mixing process is motivated

y the unavoidable presence of spurious diffusion, which can overshadow the
esults of numerical simulations when complex flows are dealt with.
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Fig. 2. Sketch of the system geometry.

added at the end of the article, a rigorous derivation of the
L ∼ s2)-scaling is reported, which highlights the role of the
implifying assumptions starting from which this expression
olds true.

. Statement of the problem and numerical solution

.1. Physical system

We are concerned with the steady-state mixing behav-
or of a diffusing scalar entering a steady inflow–outflow
wo-dimensional channel for which the velocity field is one-
imensional (parallel flow). Let φ̂(x̂, ŷ) denote the scalar
eld, and let Ω = {(x̂, ŷ)|x̂ ∈ [0, L], ŷ ∈ [0, δ]} be the chan-
el domain (see Fig. 2). The dimensional formulation of the
dvection–diffusion equation reads:

ˆ x̂(ŷ)
∂φ̂

∂x̂
= D

(
∂2φ̂

∂x̂2 + ∂2φ̂

∂ŷ2

)
, (1)

here v̂x̂(ŷ) is the velocity profile and D is the bare molecular
iffusivity. Here φ̂ can be thought of as representing the differ-
nce, φ̂ = cA − cB of the concentrations cA, cB of two chemical
pecies A and B possessing the same bare molecular diffusivity
. In this context, it is also worth noting that, in the case of

toichiometric feeding (i.e. when
∫ 1

0 v̂x̂(ŷ)φ̂(0, ŷ) dŷ = 0), the
olution of Eq. (1) also provides complete information on the
volution of a mixing-controlled reaction A + B → products
14–16].

In general, the profile v̂x̂(ŷ) can be regarded as a solution
f the Stokes problem in the (possibly contemporary) presence
f pressure gradients, electroosmotic body forces, or moving
oundaries. In what follows, we consider three prototypical
ases, namely plug, shear and the (pressure-driven) Poiseuille

ow, i.e. given by v̂x̂(ŷ) = U, v̂x̂(ŷ) = 2Uŷ/δ, and v̂x̂(ŷ) =
U(1 − ŷ/δ) ŷ/δ, respectively, U being the average velocity over
he channel cross-section.

Fig. 3. Inlet profile of the (dimensionless) species concentrations
ering Journal 138 (2008) 523–537 525

.2. Dimensionless formulation and boundary conditions

Let us first consider a dimensionless formulation of
he problem. By setting x̂ = L x, ŷ = δ y, α = δ/L, U =
1/δ)

∫ δ

0 v̂x̂(ŷ) dŷ as a reference velocity (i.e. U is the average
elocity over the channel cross-section), vx(y) = v̂x̂(ŷ/δ)/U,
(x, y) = φ̂(x̂/L, ŷ/δ)/F , with F = maxŷ ∈ [0,δ]φ̂(0, ŷ), one
btains the dimensionless equation:

x(y)
∂φ

∂x
= 1

Pe

(
α2 ∂2φ

∂x2 + ∂2φ

∂y2

)
, (2)

here Pe = δ2U/(DL) is the Peclet number representing the
atio of the characteristic time for diffusion, τd = δ2/D, to that
f advection, τa = L/U, and where the scaled coordinates (x, y)
elong to the unit square domain [0, 1] × [0, 1]. The reciprocal
/α of the parameter α is henceforth referred to as the aspect
atio.

At the channel walls (assumed impermeable to the diffusing
calar), a zero diffusive flux condition applies, i.e.:

∂φ

∂y

∣∣∣∣
y=0

= ∂φ

∂y

∣∣∣∣
y=1

= 0. (3)

t the entrance section, we consider the profile assigned, i.e.
(0, y) = φi(y), where φi(y) is given and depends on the inlet
onditions. As the main focus of this article is to assess the
omogenization length associated with a lamellar entrance con-
ition, as that generated by an interdigital micromixer, for φi(y)
e choose a stepwise function of frequency s = 1/ns:

(ns)
i (y) =

{
1 if 2h/ns ≤ y ≤ (2h + 1)/ns

−1 if 2h + 1/ns ≤ y ≤ 2(h + 1)/ns,
(4)

ith h = 0, 1, 2, . . . (ns − 1)/2, representing an array of n alter-
ating lamellae of thickness s, each characterized by a unit
oncentration of one of the two species A or B (see Fig. 3).
s it regards the outlet section, a zero diffusive flux condition

eferred to as the Danckwerts boundary condition is assumed,
∂φ

∂x

∣∣∣∣
x=1

= 0. (5)

cin
A and cin

B associated with φ(ns)
i (y) = cin

A − cin
B for ns = 8.
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.3. Quantitative assessment of mixing efficiency

In what follows, we choose as a measure of mixedness the
atio:

ν(x) = σ(x)

σ(0)
, (6)

etween the velocity-weighted scalar variance computed at the
eneric cross-section at x, and inlet sections, respectively, where
(x) is defined as

2(x) =
∫ 1

0
vx(y)

(
φ(x, y) − φ(x)

)2
dy, (7)

nd where φ(x) = ∫ 1
0 vx(y)φ(x, y) dy is the cross-sectional aver-

ge of the concentration at x (note that the total volumetric flow
ate across any cross-section is unity in the dimensionless for-
ulation). Borrowing an expression from a classical book [17],

he scalar variance defined by Eq. (7) could be defined as a “cup-
ixing” variance, i.e. it is equal to the scalar variance that one
ould measure in a mixture obtained by collecting and quench-

ng the entire flowrate exiting the cross-section at the specified x
or a time interval �t. Therefore, the variance defined by Eq. (7)
hould be regarded as a generalization of the scalar variance cus-
omarily used in closed systems to quantify mixing efficiency,
here one takes into account that the material flows at different

ate at a generic point of the cross-section, the rate being the
ocal velocity that appears as a weighting factor.

In the limit where Pe → ∞, the scalar variance is conserved
hrough the channel, and therefore σν = 1. In this case, no mix-
ng occurs. On the other hand, when Pe → 0, a perfectly mixed
tate characterizes the outlet profile, independently of the struc-

ure of the velocity profile. For this case it results σν(1) = 0.

However, none of the two limit situations is typical in
icroflows. In fact, the order of magnitude of the Pe number

n practical realizations of microfluidic devices can range in the
nterval [10−1, 103] leading to the conclusion that there is no
ypical Pe number in microflows [18].

n
(
t
fl
(

ig. 4. Outlet profiles for different discretization levels for the Poiseuille flow at 1/α =
c = 240 × 240; (�) Nc = 320 × 320; (©) Nc = 640 × 320; continuous line: Nc =

ontinuous line: Nc = 960 × 320.
ering Journal 138 (2008) 523–537

.4. Numerical solution

The numerical solution of the boundary value problem
efined in the previous section was obtained by means of a stan-
ard finite-volume relaxation method. Specifically, as it regards
he convective term, standard upwind differencing scheme was
sed.

Values of the Pe parameter between 101 and 103, and of the
spect ratio 1/α between 10 and 50 were considered.

The number of cell volumes, Nc varied from a minimum of
rder 5 × 104 to a maximum of order 106 cells, depending on the
umber of lamellae characterizing the feed stream, and on the
e value. For each simulation, the number of cells was chosen as

he minimum required to ensure that numerical diffusion could
e neglected (i.e. a further mesh refinement would not produce
hanges on the profile at steady state).

As an example, Fig. 4(a) and (b) shows the outlet concentra-
ion profiles at steady state for different levels of discretization
or an inlet condition corresponding to eight lamellae for the
ase of parabolic (Poiseuille) flow at Pe = 10 and 102, respec-
ively, and a value α = 10−1 of the reciprocal aspect ratio. As can
e observed, independence of the discretization level is already
eached at order 105 cells in both cases. The largest number of
ells considered, Nc = 1000 × 640, resulted for the case of an
nlet condition consisting of ns = 32 lamellae.

Next, let us analyze mixing performance associated with dif-
erent flow profiles and different values of the aspect ratio 1/α.
ig. 5 shows the decay of the normalized scalar variance σν(x)
long the axial coordinate for two inlet conditions (consisting of
wo and eight lamellae) for the Poiseuille and plug flows, cor-
esponding to different values of the aspect ratio 1/α. From the
nalysis of variance decay associated with the two inlet profiles,
everal observations can be made.

First, in the case of two lamellae, neither the flow profile
or the aspect ratio has a strong impact on mixing performance

compare curve A in Fig. 5(a) and (b)—note that the scale of the
wo panels is different). As it regards the performance of the plug
ow (Fig. 5(b)), pushing the degree of lamination, from ns = 2
curve A) to ns = 8 lamellae (curve B), does not improve mixing

10 and for an inlet condition consisting of eight lamellae. Panel (a) Pe = 10. (�)
960 × 320. Panel (b) Pe = 102. (�) Nc = 320 × 320; (©) Nc = 640 × 320;
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ig. 5. Axial decay of normalized scalar variance for different degrees of lami
oiseuille flow. (*) 1/α = 10, ns = 2; (�) 1/α = 20, ns = 2; (�) 1/α = 50, n

b) plug flow. Symbols are consistent with panel (a).

uality as one would expect from the analytical estimate of the
implified setting discussed in Appendix A.

The situation is rather different when the higher laminated
nlet stream (ns = 8) is fed to the parabolic flow profile (curves
–D of Fig. 5(a)). In this case, independence of the solution
f the aspect ratio is reached at values of the aspect ratio
/α ≥ 50 (corresponding to curve C), which implies a difference

f three decades between the normalized dimensionless diffusiv-
ties (1/Pe and α2/Pe) associated with the two spatial directions
see Eq. (2)). Also, one can observe that the normalized scalar
ariance quickly settles onto a strict exponential decay (note that

t
(
p
(

ig. 6. Scalar concentration profiles along the spanwise coordinate at two different c
ifferent values of the aspect ratio 1/α. Panel (a) ns = 2 at x = x2: (�) 1/α = 10; (�
c) ns = 8 at x = x1: (©) 1/α = 10; (�) 1/α = 50.
, ns = 2, 8 and different values of the aspect ratio 1/α at Pe = 10. Panel (a)
.(©) 1/α = 10, ns = 8; (©) 1/α = 20, ns = 8; (�) 1/α = 50, ns = 8. Panel

cale of the vertical axis of Fig. 5(a) is logarithmic) with a decay
ate that is independent of the channel aspect ratio.

In order to explain the sensitivity to the channel aspect ratio
isplayed by the eight-lamina feed, let us consider the scalar
rofiles along the spanwise coordinate at two different positions,
1 = 0.15, and x2 = 0.25 downstream the channel entrance (see
ig. 5(a)). At x ≥ x2 the decay rate appears independent of both
he channel aspect ratio 1/α and the degree of lamination ns

compare curves A–D of Fig. 5(a)). The analysis of the scalar
rofile for the different conditions at x2 shown in Fig. 6(a) and
b) reveals that, although different in absolute values and minor

ross-sections, x1 = 0.15 and x2 = 0.25, at Pe = 10 for the Poiseuille flow at
) 1/α = 50. Panel (b) ns = 8 at x = x2: (©) 1/α = 10; (�) 1/α = 50. Panel
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Fig. 7. Contour plot of the scalar profile for the inlet condition φ(ns)
i (y), ns = 8, at Pe = 10 and 1/α = 50. Panel (a) plug flow. Panel (b) Poiseuille
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ow. Panel (c) plug flow with periodic boundary conditions in the span
1, −10−1, −10−2, −10−3, −10−4, 0, 10−4, 10−3, 10−2, 10−1 and 1.

ualitative details, all of the profiles are essentially composed
f two lamellae,2 regardless of α and ns. Therefore, these data
uggest that the rate of scalar variance decay at a given posi-
ion along the streamwise coordinate is essentially related to
he number of surviving lamellae at the assigned cross-section.
his idea is confirmed by the analysis of the scalar profile asso-
iated with the eight-lamina feed (see Fig. 6(c)), taken at a
ross-section x1 = 0.15 where the rate of decay is much higher
han the “asymptotic” value (compare with the variance decay
lot of Fig. 5(a)). The profile associated with a high-aspect
atio, 1/α = 50 is composed by six lamellae (symbols (�) in
ig. 6(c)), whereas that associated with a value 1/α = 10 (sym-
ols (©) in the same panel) is composed by four lamellae and is
haracterized by a slower decay rate. In this case, the presence
f a lower streamwise diffusion associated with a high-aspect
atio, 1/α = 50 is such to sustain a higher number of lamellae
ith respect to the case 1/α = 10. On the other hand, in the

ase of the two-lamina feed (ns = 2) the number of lamellae
as reached its minimum already at the entrance section, and
herefore the effect of axial diffusion is immaterial under this
tandpoint.

In the next section, we show that the observations about
he decay rate can be put in a simple and rigorous frame-
ork by considering the Sturm–Liouville formulation of the

dvection–diffusion problem. In point of fact, the rate of axial
ecay of the normalized variance is directly related to eigen-
alue associated with the slowest decaying eigenmode of the
turm–Liouville formulation of the problem.

Before closing this section, we analyze next the influence
f the boundary conditions at the channel walls. For both the
lug and Poiseuille flows, the role played by the zero diffusive
ux at the channel walls appears evident from the analysis of
he contour plot of the steady-state scalar field. Fig. 7 shows
he contour level structure for plug (Fig. 7(a)) and Poiseuille
Fig. 7(b)) flow at Pe = 10 and 1/α = 50.

The data show the significant role played by the zero-flux
oundary conditions in determining the spatial structure of

2 In this context, the number of lamellae can be defined as the number of zeros
f the spanwise scalar profile augmented by one.
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coordinate y. The contour levels are chosen in a logarithmic scale as

he steady scalar field. Specifically, the contour level lines are
attracted” towards the channel walls in that they must verify the
rthogonality condition at these boundaries (i.e. the scalar gra-
ient ∇φ, that is orthogonal to the contour level curve, must be
arallel to the channel walls). It is worth noting that, even in the
ase of the plug flow, this structure is altogether different from
hat associated with the solution of the idealized situation of
eriodic boundary conditions in the spanwise coordinate [2,11],
hich is depicted in Fig. 7(c) for the same choice of parameters
s = 8, Pe = 10, 1/α = 50.

By the comparison between plug and Poiseuille flows (see
ig. 5(a) and (b)), one observes that mixing performance in the
arabolic flow profile for the ns = 8 feed stream is improved by
wo orders of magnitude with respect to the corresponding case
f the plug flow.

In order to understand what is the ultimate reason of the dif-
erent performance associated with the two velocity profiles,
et us analyze the scalar profiles downstream the entrance sec-
ion. Fig. 8 shows the scalar profile at one tenth (x = 0.1) of
he mixer length for plug and Poiseuille flow for the same
arameters of Fig. 7(a) and (b). In the case of plug flow, all of
he initial lamellar structure has been destroyed, and the scalar
tructure consists of essentially two lamellae, whereas in the
resence of parabolic flow six lamellae can be still identified.
lso, note that even though the maximum of φ in Poiseuille
ow is an order of magnitude lower than in plug flow, the aver-
ge magnitude of the scalar gradient normalized with respect
o maximum of the scalar profile is higher than the correspond-
ng quantity in the case of plug flow (not shown for brevity).
hus, the reason for the different performance of the two flows
an be given by the same qualitative explanation developed
bove when discussing the dependence of mixing performance
n the aspect ratio, i.e. the best performing flow is that capa-
le of maintaining the highest normalized gradients (essentially
elated to the number of surviving lamellae) in that to higher
radients correspond higher mixing rates. In this respect, the

onditions that maximize mixing efficiency in open systems
perating at steady state are consistent with those that yield
he highest mixing rate in closed advecting–diffusing flows
15,19,20].
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In the next section, we show that the peculiar behavior of
he parabolic flow profile can be interpreted in the framework
f the eigenvalue–eigenfunction spectrum associated with the
dvection–diffusion problem in the limit of vanishing reciprocal
spect ratio, α → 0.

. High-aspect-ratio channels: Sturm–Liouville solution

Let us then discuss the limiting behavior of Eq. (2) in the case
here α � 1, i.e. when the term α2∂2φ/∂x2 can be neglected,

hus leading to the equation:

x(y)
∂φ

∂x
= 1

Pe

∂2φ

∂y2 . (8)

n this case, it is no longer necessary to specify the outlet bound-
ry condition, namely ∂φ/∂x|x=1 = 0.

The boundary value problem expressed by Eq. (8) and the
forementioned boundary conditions can be approached by sep-
ration of variables. By setting ξ = x/Pe, Φ(ξ, y) = φ(x/Pe, y),
q. (8) transforms into

x(y)
∂Φ

∂ξ
= ∂2Φ

∂y2 . (9)

pon introducing separation of variables, Φ(ξ, y) = X(ξ) Y (y),
q. (9) transforms into a Sturm–Liouville eigenvalue problem

or the y-dependent function:

′′(y) + λvx(y)Y (y) = 0, (10)

here Y ′(y) = dY (y)/dy, equipped with the boundary condi-
ions:

′(0) = Y ′(1) = 0, (11)

hile the corresponding X(ξ) functions satisfy the equation
X(ξ)/dξ + λX(ξ) = 0. The eigenvalue problem expressed by
qs. (10) and (11) admits a countably infinite sequence of

eal non-negative increasing eigenvalues λh, λh < λh+1, h =

, 1, . . . (with multiplicity 1), and λ0 = 0. The associated eigen-
unctions, Yh(y), constitute a basis for the space of square
ummable functions L2([0, 1]) defined in [0, 1], possessing van-
shing derivative at the interval boundaries. The eigenfunctions

t
l
a
t

as those referred in Fig. 7(a) and (b), i.e. ns = 8, Pe = 10, 1/α = 50. Panel (a)
nt in the two cases.

h(y)s are orthogonal with respect to the weighting function
x(y), i.e.:

1

0
vx(y) Yk(y) Yh(y) dy = 0, h �= k. (12)

he solution Φ(ξ, y) is thus given by the series expansion:

(ξ, y) =
∞∑

h=0

Ch e−λhξYh(y), (13)

nd, correspondingly, φ(x, y) is given by

(x, y) =
∞∑

h=0

Ch exp(−λhx/Pe)Yh(y), (14)

q. (14) shows the explicit dependence on the Pe number of the
olution of the advection–diffusion equation.

The coefficients Ch are uniquely identified by the inlet con-
ition, and read as

h =
∫ 1

0 vx(y)φ(ns)
i (y)Yh(y) dy∫ 1

0 vx(y)Y2
h (y) dy

, (15)

hich stems from Eq. (13) and from the orthogonality condition
Eq. (12)). As it regards the scalar variance σ2(ξ) = σ2(x/Pe) =
1

0 vx(y)(φ − φ)
2

dy, the orthogonality of the eigenfunctions
mplies that

2(ξ) =
∞∑

h=1

C2
h exp(−2ξλh)Dh,

Dh =
∫ 1

0
vx(y)Y2

h (y) dy, (16)

here Dh are normalization coefficients that do not depend on
he inlet condition. This equation shows that the ξ-dependence
f the squared scalar variance is given by the superposition of
xponentials Xh(ξ) = exp(−2λhξ) weighted by the coefficients
2
h. From the standpoint of mixing performance, the variance at
he outlet section, say at ξ = ξL = 1/Pe should obviously be as
ow as possible. As the Pe number associated with microfluidic
pplications can take a wide range of values (order Pe = 10−1

o 103) it follows that typical values of ξL range in the interval
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10−3, 10]. From the expression of the variance equation (16),
ne gathers that, at high Pe values (e.g. Pe = 103), it is the
ntire eigenvalue spectrum, and not only the first (dominant)
igenvalue that determines the value of the scalar variance at the
utlet section.

In the case of plug flow, the eigenfunction spectrum is simply
iven by Yh(y) = cos(hπy), h = 0, 1, . . ., where corresponding
igenvalues are given by λh = π2h2. Next, we analyze the cases
f shear and Poiseuille flows.

.1. Shear flow

In this case, the dimensionless flow profile is given by vx(y) =
y, and the Sturm–Liouville problem reads as

′′(y) + 2yλY (y) = 0. (17)

y setting z = βy, Y (y) = η(z), with β = −(2λ)1/3, Eq. (17)
ransforms into

′′(z) − zη(z) = 0, (18)

where η′(z) = dη(z)/dz), equipped with the boundary condi-
ions η′(0) = η′(β) = 0, for which the fundamental solution is
linear combination of the Airy functions Ai(z), Bi(z), η(z) =
1Ai(z) + C2Bi(z) (see, e.g. [21]).

By imposing the first boundary condition, η′(0) = 0, one
btains C1 = √

3C2. By enforcing the second boundary con-
ition, η′(β) = 0, one obtains that the parameter β satisfies the
quation:

3Ai′(β) + Bi′(β) = 0. (19)

he zeros of Eq. (19) form a non-positive sequence {βh}, h =
, 1, . . ., diverging to −∞. Therefore, the solution of the original
roblem in terms of φ is given by
(x, y) =
∞∑

h=0

Ch e−2|βh|3x/Pe
(√

3Ai(βhy) + Bi(βhy)
)

. (20)

c
f
a
a

ig. 9. Comparison between the solution of the full boundary value problem with the S
epresent the solution stemming from the Sturm–Liouville approach, the symbols th
ow. Panel (b): shear flow. Curve A and (©) symbols: ns = 2; curve B and (�) symb
ering Journal 138 (2008) 523–537

.2. Poiseuille and generic flow profiles

In the case of the (dimensionless) Poiseuille flow, vx(y) =
y(1 − y), or of a generic profile, no simple change of vari-
bles can be found to obtain an analytical solution. However,
he Sturm–Liouville problem can be approached numerically,
nd the eigenvalue–eigenfunction spectrum can be computed
y solving a system of two ordinary differential equations:

′
1 = Z2, Z′

2 = −λvx(y)Z1, (21)

here Z1 = Y (y), and Z2 = Y ′(y), with the initial condition
1(0) = C, Z2(0) = 0, C �= 0 being and arbitrary constant (e.g.
nity). Specifically, the eigenvalues {λh} are obtained by classi-
al shooting method, as those values that yield Z2(1) = 0.

The integration step-size was fixed by using the shear flow
s a test case, by comparing numerical integration results with
he analytical solution. The numerical integration was obtained
y using a fourth-order Runge-Kutta routine, for which a step
ize �y of order 10−5 was necessary to obtain a spectrum of
e = 300 eigenvalues–eigenfunctions practically indistinguish-

ble from that obtained analytically.
In the case of the Poiseuille flow, the use of this integra-

ion step size yielded a maximum error |Y ′
h(1)| ∼ 10−3 for the

ighest modes. The corresponding eigenfunctions Yh(y) were
ampled and recorded on 5 × 103 points equally spaced on the
nterval [0, 1].

.3. Results

Let us first analyze the validity of the Sturm–Liouville
pproximation. The Sturm–Liouville approach is rigorously
alid only in the limit 1/α → ∞, and therefore it is important
o compare the solution stemming from this approach with that
ssociated with the full boundary value problem. Fig. 9 shows
he results of this comparison for a value 1/α = 50, which is no
ncommon in micromixers (see, e.g. the example of the “Tee

onfiguration mixer” reported in [2]). As it can be observed,
or both Poiseuille and shear flow, no significant qualitative
nd quantitative discrepancies between the results of the two
pproaches can be appreciated, and this confirms the validity

turm–Liouville approximation at 1/α = 50 and Pe = 10. The continuous lines
e results of the finite volume solution of the full problem. Panel (a): Poiseuille
ols: ns = 4; curve C and (�) symbols: ns = 8.
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ig. 10. Steady-state scalar concentration profiles Φ(ξ, y) for different degrees o

s = 2, 8, 16, respectively; (d)–(f) shear flow with ns = 2, 8, 16, respectively

f the Sturm–Liouville approach for 1/α ≥ 50. Henceforth, we
onsider exclusively the Sturm–Liouville solution.

Let us compare the steady-state profiles associated with dif-
erent degrees of lamination of the inlet stream in the three
rototypical velocity profiles. Fig. 10 shows the homogenization
rofiles, Φ(ξ, y) for ns = 2, 8, 16, as a function of the spanwise
oordinate y and of the rescaled streamwise coordinate ξ = x/Pe

note that the ξ-scale is logarithmic). These graphs can be inter-
reted in two different ways. At fixed Pe number, say Pe = Pe,
he value Φ(ξ, y), for ξ ∈ [0, 1/Pe], yields the scalar concentra-
ion value along the channel axis, from x = 0 to 1. On the other
and, by interpreting the scaled ξ coordinate as the reciprocal of
he Pe number, ξ = 1/Pe, the profile Φ(ξ, y) at fixed ξ can be
hought of as the outlet profile (x = 1) at the assigned Pe = 1/ξ

alue.

In the case of a two-lamina feed, ns = 2, mixing perfor-

ances are similar in the three cases (Fig. 10 panels (a), (d)
nd (g)), i.e. for a low degree of lamination (ns = 2 can be taken
s representative of T-junction micromixers), homogenization is

y

c

g

ination of the feed stream, and for different flow profiles. (a)–(c) Plug flow with
i) Poiseuille flow with ns = 2, 8, 16, respectively.

eakly affected by the flow profile, the best performance being
hat associated with the Poiseuille flow. Note that in the case of
he shear flow the average scalar value attained at the outlet sec-
ion is negative since the velocity is higher where the inlet profile
s negative. As the degree of lamination increases from ns = 2
p to 8, the impact of flow profile on mixing becomes evident
Fig. 10 panels (b), (e) and (h)). In this case, the performances of
lug and shear flow are comparable, with a nearly homogeneous
rofile reached at ξ > 0.1 (i.e. log10(ξ) > −1), whereas, for the
oiseuille flow, a substantially flat profile is reached at ξ > 10−3.
hese differences are amplified when the highest value of ns

s considered (Fig. 10 panels (c), (f) and (i)). For the case of
hear flow (Fig. 10 panel (f)), an asymmetric profile is obtained
s a consequence of the asymmetry of the velocity field, with
higher degree of mixing reached sooner near the static wall

= 0, since the low values of the local velocity implies higher

ontact times.
A more concise outlook at mixing homogenization can be

ained by considering the scalar variance as an overall index
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the plug and Poiseuille flows, for two different inlet conditions,
ns = 2 and 8. In the first case (i.e. ns = 2), the Ch-spectra (which
can be referred to as the energy spectrum associated with the
ig. 11. Normalized scalar variance σν(ξ) vs. the scaled axial coordinate, ξ = x

amination of the inlet condition, ns = 2, 4, 8, 16, 32.

f mixedness. Fig. 11 shows the decay of the normalized scalar
ariance σν(ξ) versus the scaled coordinate ξ = x/Pe.

When interpreting the scaled ξ coordinate as the recipro-
al of the Pe number, the curves depicted in Fig. 11 yield
he correspondence between a prescribed value of the nor-

alized scalar variance, say σν, at the outlet section, and the
orresponding value ξ that provides the assigned value of the
ormalized variance σν. From the value ξ, the channel length
an be computed. For instance, assume the channel width, δ, the
haracteristic velocity U, and the bare molecular diffusivity D,
re held fixed, and suppose that a prescribed normalized vari-
nce, say σν = 0.05, is sought. Henceforth we refer to a degree of
ixedness σν = μ as “(1 − μ) 100% mixing”, the present case

orresponding to “95% mixing”. For each degree of lamination
s, the corresponding value ξ95 can be determined from the data
epicted in Fig. 11. Since ξ95 = 1/Pe = DL/(δ2U), it follows
hat the length required to accomplish this degree of mixedness
s equal to L95 = ξ95δ

2U/D.
The behavior associated with plug and shear flows depicted

n Fig. 11(a) and (b) shows that when a high mixing performance
s required (e.g. 99% mixing), the degree of lamination impacts
ery little on the mixer length. The situation changes signifi-
antly when less strict performance is required. For instance,
n the case of plug flow, the difference between the ξ99 values
ssociated with ns = 2 and 32 is of three orders of magnitude.

The overall mixing profiles associated with the Poiseuille
ow (Fig. 12) show a behavior that is qualitatively and quanti-

atively different with respect to the two cases discussed above.
irst, even at high mixing performance, the associated ξ values
epend significantly on the degree of lamination. Furthermore,
hen high degrees of lamination are considered (e.g. ns ≥ 8),
ixing performances can improve by more than two orders of
agnitude with respect to the corresponding case associated
ith plug or shear flows, whereas no significant improvement is
bserved at ns = 2.

Since the velocity profile vx(y) directly enters the definition
f the Sturm–Liouville eigenvalue problem (see Eq. (10)), it is

easonable to expect that a sensitive difference between mix-
ng performances for the same inlet condition in different flow
rofiles should reflect into the eigenvalue–eigenfunction spectra
f the corresponding Sturm–Liouville problems. However, the

F
x

o

for (a) plug flow and (b): shear flow. The arrow indicates increasing degree of

tructure of the eigenvalues and eigenfunctions show that such
ifferences do not justify neither the differences in the degree
f mixedness observed for the three flow structures considered
or the striking performance of the Poiseuille flow.

Fig. 13 shows the first 10 eigenvalues (beside λ0 = 0) for
he different velocity profiles (panel (a)) and the first 3 eigen-
unctions (beside Y0(y) = 1) associated with the Poiseuille flow
panel (b)), compared with the corresponding eigenfunctions
f the plug flow. As can be observed, neither the eigenvalue
pectrum nor the eigenfunction structure display remarkable dif-
erences (compare, e.g. the eigenfunctions of Poiseuille and plug
ows in Fig. 13(b)).

Therefore, from the functional form of φ(x, y) reported in
q. (14) it follows that the improved mixing performances char-
cterizing the Poiseuille flow can be attributed solely to the
ccurrence of significantly different spectra of projection coeffi-
ients {Ch} with respect to the plug or shear flow. Fig. 14 shows
he absolute value of the first coefficients Ch associated with
ig. 12. Normalized scalar variance σ2
ν (ξ) vs. the scaled axial coordinate, ξ =

/Pe, for the Poiseuille flow. The arrow indicates increasing degree of lamination
f the inlet condition, ns = 2, 4, 8, 16, 32.
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ig. 13. Panel (a) first 10 eigenvalues of the Sturm–Liouville problem associate
hree eigenfunctions for the Poiseuille (continuous lines) and the eigenfunction
rder h = 1–3.

nlet condition) are quantitatively and qualitatively similar (note
hat the even-order coefficients vanish due to the symmetries of
he flow profiles and of the inlet condition). The energy content
ssociated with each eigenmode is monotonically decreasing in
oth cases. For a higher degree of lamination (ns = 8), the dis-
ribution of energies among the eigenmodes shows significant
ifferences. In the plug flow case, even though the higher energy
ontent is concentrated onto the seventh mode, the first two odd
oefficients are still significantly different from zero. Since they
re associated to the slowest decaying eigenfunctions, they are
ound to dominate the overall rate of decay, at moderate and
igh ξ values. In the case of the Poiseuille flow, these coeffi-
ients are essentially zero, and therefore the slowest decaying
ode is that associated with the fifth eigenvalue. This explains
hy mixing performance is so different in these two cases.

It can be noted that the different values attained by the first

wo odd coefficients for the plug and Poiseuille flows is not a
irect consequence of the eigenfunction structure (for instance,
he first eigenfunction is quantitatively similar in the two cases,

a
t
fl
P

ig. 14. Absolute value of expansion coefficients Ch of the steady-state scalar field in

s = 2; (b) Poiseuille flow, ns = 2; (c) plug flow, ns = 8; (d) Poiseuille flow, ns = 8.
plug (©), shear (�), and Poiseuille flow (∗). Panel (b) comparison of the first
y) = cos(hπy) of the plug flow (dashed lines). The arrow indicates increasing

ee Fig. 13(b)), but rather it is related directly to the fact that
he scalar product that defines the coefficient value is weighted
y the flow profile. To give an illustration of this point, let us
onsider the function:

1(y) =
∫ 1

0
vx(y) φ(ns)

i (y) Y1(y) dy, (22)

hose integral over the channel height yields the first coefficient
1. Let us also define �1(y) = ∫ y

0 γ1(y′) dy′ (i.e. C1 = �1(1)).
ig. 15 shows the behavior of the functions γ1 and �1 for an

nlet profile with ns = 8 in the case of the plug and Poiseuille
ows. As can be observed, the values of γ1 are similar in most
f the channel section with the exception of the regions near
he wall, where, in the case of the Poiseuille flow, the behav-
or of γ1 is dominated by the vanishing velocity profile vx(y)

t the walls. As a consequence of the different behavior in
hese regions, the integral �1 is positive in the case of the plug
ow, whereas it oscillates about zero mean in the case of the
oiseuille flow (Fig. 15). Therefore, the major role played by

terms of the eigenfunctions of the Sturm–Liouville problem for (a) plug flow,
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ig. 15. Behavior of the functions γ1(y) and �1(y). Dashed line: γ1—plug flow.
ontinuous line: γ1—Poiseuille flow. (©) �1—plug flow. (©) �1—Poiseuille
ow.

he flow profile in defining the spatial rate of homogenization
f the advecting–diffusing scalar manifests itself through the
eighted averages that define the projection coefficients Ch onto

he Sturm–Liouville eigenbasis.

.4. Dependence of mixing time and mixing length on
amellar thickness

As briefly discussed in the introductory section, for the
ase of plug flow, Eq. (8) can be also thought of as a one-
imensional unsteady diffusion problem, with the x coordinate
laying the role of the (dimensionless) time-coordinate, and
ith the inlet condition φ(ns)(y) playing the role of the initial

ondition. A similar interpretation holds even in the case of non-
onstant flow profiles, as long as a variable effective diffusivity
(y) = D/vx(y) is allowed. In this respect, the observations dis-

ussed above about the mixing length (i.e. the length necessary to
chieve a prescribed degree of mixedness) can be also interpreted
n terms of mixing time, where the relevant time scale is given

y θ = L/U (i.e. time is made dimensionless with respect to
he convective time scale). Then, the value ξμ to achieve a given
evel of mixedness σν(1) = 1 − μ/100 can also be interpreted
s proportional to the mixing time θ.

w
a
c
t

ig. 16. Dimensionless length to achieve a prescribed degree of mixedness as a
, 4, 8, 16, 32, 64. (+ and curve F), (� and curve C), and (© and curve D) repre
), (© and curve B), and (� and curve A) represent ξ99 in the same order. The con
onditions; (+ and curve B) ξ95; (� and curve A) ξ99.
ering Journal 138 (2008) 523–537

An important issue is to establish how, for a given degree
f mixedness μ, the dimensionless mixing length ξs (or the
imensionless mixing time, for that matter) depends on the
imensionless lamellar thickness s = 1/ns [1,8]. Fig. 16(a)
hows such dependence for the flow profiles considered in this
rticle. For a comparison, panel (b) in the same figure reports
he prediction ξs versus s obtained in the case of the plug flow
quipped with periodic boundary conditions as discussed in [2],
hich represents the state of the art in the design of interdigital
icromixers.
As can be observed, only the Poiseuille flow (lines E and F

n Fig. 16(a)) verifies approximately the simple scaling L ∼ s2,
ndependently of the prescribed degree of mixedness μ. The
omparison with the case of plug flow equipped with periodic
oundary conditions in the spanwise coordinate (lines A and B of
ig. 16(b)) shows that not only the power-law scaling, but even

he order of magnitude of the ξ values is in good agreement.
owever, this agreement should be considered purely coinci-
ental in that both the flow profile and the boundary conditions
re different in the two cases.

In the case of plug (lines A and C) and shear flows (lines B
nd D), a substantially similar trend can be observed, namely,
hat the relationship between mixing length and lamellar thick-
ess is strongly influenced by the degree of homogenization
hat is required. At a high degree of homogenization (μ = 0.01,
.e. “99% mixing”—lines A and B), the mixing length scales
ery slowly with s. Also, note that the consideration of differ-
nt boundary conditions with respect to the periodic case for the
ame plug flow profile (compare lines A and C of Fig. 16(a) with
ines A and B of Fig. 16(b)) changes both the scaling relation
nd the order of magnitude of the predicted mixing length. An
nteresting phenomenon that is worth noting is the crossing of
he ξ95 curves associated with plug and shear flow, which shows
hat, at low values of s, the performances of plug flow is better
han that associated with shear flow, whereas the opposite occurs
t high s values. This behavior can be put into correspondence

ith the spectral structure of the associated Sturm–Liouville

nd depends on the energy content of the expansion coeffi-
ients of the inlet profile with respect to the basis defined by
he Sturm–Liouville operator. Specifically, the “95%” condi-

function of the dimensionless lamellar thickness s = 1/ns. Panel (a) ns =
sent ξ95 for the Poiseuille, shear, and plug flows, respectively. (� and curve
tinuous line is the scaling ξ = s2. Panel (b) plug flow with periodic boundary
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ion is still relatively unmixed, so that several Sturm–Liouville
odes are still active, and therefore the mixing performances

till depend on the superposition of the active modes coefficients
ith respect to the decaying eigenmodes, which are ultimately
ependent on the degree of lamination of the inlet scalar profile.
n the case of the “99 %” curve, the level of mixedness is instead
overned essentially by the dominant eigenvalue–eigenfunction,
nd therefore the shear flow performs better in that it possesses a
igher dominant eigenvalue (faster decaying mode) with respect
o the plug flow (see Fig. 13).

The data depicted in Fig. 16(a) can be considered as a
esign diagram for estimating the mixing length (or the mixing
ime) associated with a given flow profile. In this respect, it is
orth observing that similar diagrams could be constructed with
ery modest computational effort for any type of parallel flow
y solving the corresponding one-dimensional Sturm–Liouville
roblem, for which the shooting method discussed in this arti-
le provides a computationally simple strategy for obtaining the
pectrum of eigenvalues/eigenfunctions.

.5. Mixing in open and closed flows.

The equivalence between transient mixing in a closed sys-
em (with spatially dependent effective diffusivity) and axial

ixing in an open system operating at steady state, discussed
t the beginning of Section 3.4, poses the problem of establish-
ng to what extent the knowledge achieved in the understanding
f mixing processes in closed bounded flows can be straight-
orwardly extended to stationary inflow–outflow systems where
treamwise diffusion can be neglected. In general terms, quan-
ifying mixing in a closed (impermeable) system by the action
f a stationary or time-periodic incompressible flow consists of
etermining the spectrum of eigenvalues–eigenfunctions asso-
iated with the advection–diffusion operator, in the case of
n autonomous flow, or with the Poincaré operator associ-
ted with the non-autonomous advection–diffusion equation, in
he case where the flow is time-periodic (see, e.g. [15]). For
teady flows, the real part of the dominant (non-zero) eigen-
alue of the advection–diffusion operator, say Λ1, provides
he slowest homogenization exponent Λhom, (i.e. Λhom = Λ1),
hat quantifies the exponential relaxation towards the equilib-
ium state, which is given by a constant scalar concentration
eld. In the case of time-periodic flows, the homogeniza-

ion exponent Λhom is a function of the dominant eigenvalue
different from 1), say μ1, of the Poincaré operator associ-
ted with the time-periodic advection–diffusion equation, and
s given by Λhom = − log |μ1|/Tp, where |μ1| < 1 and Tp
s the flow period. For details, see e.g. [15,19,20]. The cen-
ral issue in closed bounded systems is therefore to establish
ow, for a given convective flow, the dominant eigenvalue
epends on the Pe parameter. In general, a scaling relation of
he type Λhom ∼ Pe−β holds true (referred to as convection-
nhanced mixing regime whenever β < 1), where the exponent
depends on the properties of the flow field and on its
nteraction with diffusion. Therefore, in the case of closed
ounded flows the impact of the advecting flow on the mixing
rocess manifests itself in defining the scaling of the eigen-

a
c
e
o

ering Journal 138 (2008) 523–537 535

alue spectrum of the advection–diffusion operator with the Pe

umber.
Under this respect, the case study discussed in this article,

amely a generic parallel flow, is yet too simple to display a
onvection-enhanced regime for axial mixing. This is evident
rom the Pe-free formulation of the Sturm–Liouville problem
xpressed by Eq. (9). In point of fact, the independence of
he eigenvalue spectrum {λh} of Pe implies that the eigenval-
es associated with the nonscaled coordinate x of the original
roblem, say Λ̃k, are simply given by λk/Pe, i.e. the eigen-
alues associated with the original problem depend on Pe as

˜
k ∼ 1/Pe. Therefore, while the λks depend on the specific
ow profile, the exponent β that expresses the dependence of

he eigenvalues of the original problem on Pe does not, and
esults always equal to unity. In this precise meaning, we claim
hat there cannot be any convection-enhanced diffusion phe-
omenon associated with steady-state axial mixing in a parallel
ow (note that the same observation applies to a parallel flow in
three-dimensional channel, as long as the velocity components
nto the cross-section are everywhere zero).

However, as showed throughout the article, this does not
mply by all means that all of the velocity profiles yield the same

ixing performance. In fact, the different performance does not
anifest itself in terms of dominant decay exponent, but rather

n defining what is the energy content of a prescribed inlet stream
i.e. the magnitude of the expansion coefficient) associated with
ach decaying mode.

. Concluding remarks

We analyzed the impact of lamination degree (i.e. num-
er and thickness of lamellae of the feed stream) on the
dvection–diffusion process taking place in a rectangular chan-
el in the presence of plug, shear, and Poiseuille flows.
n dimensionless form, the full advection–diffusion problem
epends on two parameters, namely the Peclet number, Pe, and
he channel aspect ratio, 1/α. At high values of 1/α (α → 0),
he steady-state solution is expected to become independent of
. Finite volume simulations suggest that this regime is reached
or values of α that can depend significantly on the flow profile
nd on the degree of lamination.

In the limit of high-aspect ratio, the advection–diffusion
rocess can be approached analytically by solving a
turm–Liouville generalized diffusion problem in the spanwise
oordinate, characterized by a variable (effective) diffusivity
iven by 1/(vx(y)Pe). Besides the simple case of plug flow,
n analytical solution of the Sturm–Liouville problem has been
lso derived for the shear flow in terms of Airy functions.
or the Poiseuille flow and more generally for an arbitrary
arallel flow, the Sturm–Liouville eigenvalue–eigenfunction
pectrum problem can be approached by shooting algorithms.
rom the standpoint of computational cost, the advantage of
sing the Sturm–Liouville approach appears evident as soon

s one considers that, at assigned flow profile, only a single
omputation of the eigenvalue–eigenfunction spectrum is nec-
ssary, independently of the Pe number, whereas the solution
f the full boundary value transport problem requires to run
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simulation for each assigned Pe. Once the Sturm–Liouville
pectrum has been computed, one is left with the determination
f the projection coefficients, which requires simple quadra-
ures. Beyond computational time requirements, the advantage
f using the Sturm–Liouville approach can be appreciated also
n terms of memory requirements in that it allows to recast
two-dimensional problem into a one-dimensional eigenvalue
roblem.

The analysis of the Sturm–Liouville solution shows that
lmost independently of the degree of lamination, plug and shear
ows perform similarly in terms of mixing efficiency, quan-

ified by the velocity-weighted scalar variance. In the case of
he Poiseuille flow, instead, mixing efficiency can be enhanced
y orders of magnitude for high degrees of lamination. On the
ther hand, at ns = 2, that is, in the case of a T-junction mixer,
he enhancement is barely appreciable.

From the design standpoint, an important issue is to establish
ow the mixer length depends upon the lamination thickness.
imple estimates, based on the diffusive timescale in a spatially
eriodic array of alternating lamellae, forecast a scaling L ∼ s2

f the mixer length L necessary to obtain an assigned level of
ixedness, and the characteristic size s of the lamination thick-

ess. We found that, in general, this scaling is hardly verified.
or instance in the case of plug and shear flows, the relation-
hip between L and s depends upon the degree of mixedness
equired. However, the scaling relation is not represented by a
ower law. The L ∼ s2 is instead found where less expected,
.e. in the case of Poiseuille flow. This behavior can be put
nto correspondence with the peculiar spectral structure that
ighly laminated feed streams possess with respect to the eigen-
asis stemming from Sturm–Liouville generalized diffusion
roblem.

The approach outlined is this article can be considered an
xtension of the widely used analytical estimate of mixing
ength/time in interdigital micromixers obtained by recasting
he steady-state advection–diffusion problem into a one-
imensional pure diffusion equation equipped with periodic
oundary conditions. We showed that these approximations can
ead to a significant overestimation of mixing efficiency. The
pectral representation of the solution provides a direct insight
n the impact of the flow profile on mixing efficiency, and can

n principle be used for designing flow profiles (e.g. by combin-
ng an overall pressure drop with electroosmosis) that minimize
he projection coefficients of the inlet profile onto the slowest
ecaying modes.

E
l
t
s

ig. A1. Coefficient spectrum associated with different degrees of lamination, ns, of
23) equipped with periodic boundary conditions: (a) ns = 2 and (b) ns = 8.
ering Journal 138 (2008) 523–537

ppendix A

In this appendix, we derive the L ∼ s2 scaling that is widely
sed in the literature for estimating the dimensions and the oper-
ting conditions of micromixers (see, e.g. [1] and therein cite
eferences). With the simplifying assumptions of uniform flow,
eriodic boundary conditions and high-aspect ratio α → 0, the
dimensional) steady-state advection–diffusion equation reads
s

∂φ̂

∂x
= D

(
∂2φ̂

∂x2 + ∂2φ̂

∂y2

)
, (23)

here 0 ≤ x ≤ L and 0 ≤ y ≤ δ are the streamwise and span-
ise coordinates, and U is the characteristic (mean) velocity (see
ig. 1).

The analytical solution of this simplified problem set-
ing can be expressed in terms of Fourier series φ̂(x, y) =

∞
h=1Ch Xh(x) sin(2 hπy/δ), where Xh(x) = exp(−Λhx),

h = 4π2h2D/(δ2 U). For an assigned degree of lamina-
ion ns of the feed stream (see. Eq. (4)), the coefficients

(ns)
h (we use here the superscript “(ns)” to indicate that the
ourier coefficients refer to an inlet profile φ(ns)

i (y) given by
q. (4)) are characterized by an invariant energy spectrum.
pecifically, only the coefficients {C(ns)

j } with j = ns/2 + i ns

i = 0, 1, 2, . . .) are different from zero. Furthermore, when
wo different degrees of lamination, say ns = n1 and ns = n2
re considered, then it results that C(n1)

n1/2+i n1
= C(n1)

n2/2+i n2
for

ny integer i (see Fig. A1).
Next, assume that a given level of mixedness of the scalar

ariance at the outlet section, say σ, is fixed. For values of
larger than δ2U/(4π2D), the leading term in the Fourier

eries is associated with the first nonvanishing coefficient which
s Cns/2. Therefore σ ∼ |C2

ns/2| exp(−4π2(ns/2)2DL/(δ2 U)).
hen this relationship is made explicit with respect to L, one

btains

≈ δ2U| log(σ/|Cns/2|)|
π2Dn2

s

. (24)
q. (24) implies a scaling relation L ∼ s2 between the mixing
ength and the lamellar thickness s = δ/ns. It is also worth noting
hat the scaling relation just obtained (within the approximations
tated above) is independent of the level of mixedness σ.

the feed stream for the sine Fourier series representation of the solution of Eq.
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